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Abstract—This paper presents the study of the flow and heat transfer characteristics in unsteady boundary
layer growth over a rotating sphere in forced flow caused by a uniformly accelerated free stream velocity.
Results are presented for gases with a Prandtl number of 0.71 and various buoyancy and rotational values
when the surface is solid or porous subjected to suction or injection. A numerical method is applied for
which the conditions for stability and optimal convergence are determined. It is found that the local Nusselt
number and the local friction factor increase with increasing buoyancy for aiding flow and suction while
they decrease with increasing buoyancy and injection. The threshold of significance of buoyancy forces
decreases as injection increases and increases as suction increases.

INTRODUCTION

THE ROLE of the buoyancy force on the forced and
free convection heat transfer about the axisymmetric
round-nosed bodies for the cases of aiding and oppos-
ing flows has been studied in the steady state by several
authors [1-3]. The neglect of the buoyancy force,
which is due to the density variation when the tem-
perature difference between the surface and the fluid
is large, may not be justified when the velocity is small.
The determination of the thermal boundary layer
properties in the case of mixed convection are of par-
ticular interest because of their practical implications.

The problem of mixed forced and free convection
about a non-rotating sphere has been studied by Chen
and Mucoglu [4] while the effect of the mixed flow in
a laminar boundary layer over a rotating sphere has
been investigated by Rajasckaran and Palekar [5).
In both cases appropriate coordinate transformations
are used so that the partial differential equations of
the problem are reduced to equations involving
derivatives with respect to only one variable. The
equations obtained are solved numerically under vari-
ous velocity and thermal boundary conditions. In the
case of very small Reynolds and Grashof numbers
analytical solutions have been presented on the prob-
lem of mixed forced and free convection about a
sphere by Hieber and Gebhart [6). Under the same
conditions experimental results have been reported by
Yuge and Klyachko [7, 8].

Although unsteady hydrodynamic flow with or
without heat transfer has been studied extensively in
the cases of infinite plates [9] it seems that very little
work has been carried out on unsteady axial flow past
a body of revolution like a sphere or a cylinder {10].

The problem to be tackled here is the unsteady flow
of a viscous incompressible fluid around the surface
of a rotating sphere. The effect of the buoyancy force

on the flow arising from the combination of rotation
and forced flow is studied at large Reynolds and
Grashof numbers. The analysis is carried out for
both aiding and opposing flows in which the buoyancy
force aids and opposes the forced convective flow,
respectively. The boundary layer growth on a spinning
sphere is studied for an impermeable and a porous
surface, respectively. In the second case the sphere is
subjected to suction or injection of fluid of the same
kind. Results are presented for gases having a Prandtl
number of 0.71 and for two constant values of the
angular velocity @. A numerical technique based on
the finite difference approximation using the explicit
method [11] has been developed for our case where
several variables are involved and the criteria for sta-
bility and convergence are determined.

ANALYSIS AND SOLUTION METHOD

Consider an unsteady incompressible flow about a
rotating sphere of radius r, which is placed in a
flow field with free stream potential velocity U’ =
1.5U,sin (x'/ro) f(f) and a constant temperature
T,. U, is a constant velocity and f(¢) a dimen-
sionless function of time #. The rotational axis of
the sphere is parallel to the free stream velocity and
opposite to the gravitational field as shown in the inset
of Fig. 1. The fluid properties are constant except
that the density changes produce buoyancy forces. We
consider a curvilinear coordinate system (x’, y’, ¢")
such that x” is measured along a meridian from the
first stagnation point and )’ measures the distance
normal to the surface. The radial distance from a
surface element to the axis of symmetry is denoted
r'(x") = rosin (x'/ry).

If o', v', w’ are the components of the velocity field
and 7" the temperature, the equations which govern
the boundary layer are given by
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NOMENCLATURE
a,a; coefficients of the partial derivatives U, time independent local free stream
Cr local friction factor velocity
< constant vertical velocity at the surface u velocity component in the x-direction
C,,Co, C_ injection, solid wall and suction, * velocity ratio, u/U
respectively v velocity component in the y-direction
g dimensionless gravitational acceleration w velocity component in the direction of
h, local heat transfer coefficient rotation
h step of space variables w*  velocity ratio, w/w
Gr  Grashof number, gB(T, — T.)ry/v’ x coordinate measured along the surface
K thermal conductivity from the stagnation point
k step of time variable y coordinate measured normal to x
L function of the second-order numerical z coordinate measured in the direction of
approximations rotation.
Nu  local Nusselt number, Ary/K
Nu, local Nusselt number at the stagnation
point Greek symbols
Pr Prandtl number, v/a o thermal diffusivity
qw local surface heat transfer rate per unit B thermal expansion coefficient
area S, velocity boundary layer thickness
ro radius of sphere Sy thermal boundary layer thickness
r, ratio, k/h? 7] dimensionless temperature
r radial distance from symmetrical axis to 0, Heaviside step function
surface A buoyancy parameter, Gr/Re’
Re Reynolds number, U,ro/v Vo kinematic viscosity
t time T local wall stress, 0.5C; Re™ ' *
T fluid temperature w,, w, small and large angular velocity,
7,  wall temperature respectively.
T, free stream temperature
U local free stream velocity
U,  undisturbed oncoming free stream Superscript
velocity ! dimensional quantities.
é ., 0 ., 0 \ (2) the positive and negative signs are to be taken
ﬁ(' W)+ oy r) = M for aiding (T, < T.,) and opposing (T}, > T7,) flows,
, 2 A , respectively. The radial velocity of the fluid v" = ¢" is
o +u'§i +U'€'i _wior _dU considered to be a constant at the surface. For an
or T ax ' o ox o dr impermeable surface we have ¢’ = 0 while in the case
% of a porous surface fluid is sucked (¢’ < 0) or injected
o +gB(T' —T%)sin(x'/rs) (2) (¢’ > 0) with a constant value.
4 The following non-dimensional variables and pa-
ow ow ow  wu ar a*w’ rameters are introduced :
Tty T w0y O
$ Yy X y; Reuz r(x) r;(x,) ! U0[,
Py ’ - 2 X = — ) = s = R =—
£+u'a._T_+v’o_T__—_.‘l.a_T_ 4 To Y To To o
or ox’ ay  Proy? ’
- W v’ Re'? W ro
subjected to the boundary conditions =7 v = o W= ff; g= UZ g
0
Ww=v=w=T=0 at <0
T o@ _ T-T,  ip2
Ww=0 v=¢, W= F(x)w, T =T, o . = -—Uo , B= ~—-———T;— T , A =GrjRe’. 6)
at y=0, >
s i —(4 the followin,
W=U, w=0, T'=T, at y-w, >0 ‘ Th? system of equations (1)-(4) takes the g
5y form:

Let us consider that T, represents the uniform tem-
perature of the surface of the sphere. Then in equation

o(ru)
ox

o) _

3y 0 !
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FI1G. 1. Profiles of 4* and w* as functions of y and ¢ for
w=w,c=0and Pr=10.71 at x = 0.6.

ou 6u ou wor dU
*a-t-+ub-;+05—~r—a=~&+ay‘—z+/\0r (8)
dw w  dw  wudr otw ©
FrR PR dy  r dox oy’
a0 06 20 1 9%
E+ug+v5}-)=ﬁa—y—2-. (10)

The boundary conditions for the same dimen-
sionless variables are

u=v=w=0=0 at 1<0

u=0,v=c, w=r(x)w, §=1at y=0, t>0

u="U, Q)

Here we consider the uniformly accelerated free
stream velocity so that U = 1.5¢sin x.

Physical quantities of primary interest are the local
Nusselt number Nu and the local friction factor C;
which are defined respectively by

w=0, =0 at y—-ow, >0

hyrg 2z,

Nu = X’ Cf = p_U.‘z,

where the local heat transfer coefficient and the

wall shear stress are given respectively by k. = g,/

(Tu—T2)and 1, = (0w /0y’), . o Where g, = —K(T’/

8y"),- = o. Using the non-dimensional variables (6)
we obtain the relations

7] ou
Nu e = — (—) G R = (—) .
6)’ y =0 = 5)’ fy = 0

(13)

The numeric solution of parabolic equations (8)—

(12)

(10) is based on the finite difference approximation,
using an extension of the explicit method for one
variable in the present case of several variables. Let us
describe the method, using an equation of the general

where u, represents the partial derivatives of u with
respect to the subscript and a is a positive constant.
The approximation to u(nk, ik, jh) where k and A
represent the steps in time and space, respectively, is
denoted by «7,. Substituting into equation (14) the
approximation u; = (u7'—ui)/k for the derivative
with respect to time and using the central difference
approximations to first order for the spacial deriva-

tives we obtain

ne

h .
wil=r, <a+a’{“ 5) upio+(1-2ar )

h 2
+1, (a—a",.,,. 5> Wijer+, + 0T +KRY)  (15)

where

r, = kfh?.

Extending the method of Richtmyer and Morton [11]
for the estimation of the minimum truncation error
we have found after detailed calculations that the
necessary stability conditions are
r, < and h< 2 (16)
'S 2 la,
where | a,|| = max{a,(x,y,t)|. The condition for
optimal convergence of equation (14) is determined
egiected terms
of order k? and kh?, respectively. Rewriting equation

(14) as u, = au} + H where H = —(a\u,+agu.—as)
this requirement is expressed by
k* | kh? kh*
L=7u,+T<§H 01—2‘ ¥

where 6H = a,u] ~a,u3. In the first instant after the
motion had been started from rest, the boundary layer
is very thin and the viscous term u? is very large while
the convective term A retains its normal values. The
term «? is balanced by the non-steady acceleration y,
together with the pressure gradient (if it exists). Sub-
stituting the derivative «? = a’u}+aH?+H, into
equation (16) we obtain

h* a oH
=3 [r, (r,a— 3) u;+rf(aH,2+H,)+r,~3—] ~0.

(18)

Neglecting the second term which varies like r2 and
considering that the contribution of the third term
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to the correction is negligible, we observe that the
quantity L is minimized for r, = 1/(6a). This condition
for optimal convergence has been verified by extensive
numerical calculations.

Applying the above analysis in the system of equa-
tions (8)-(10) simultaneously we conclude that the
necessary stability conditions are

1 2a;
S —(i=uwb d h<— 19
r 2ai(t u,w, 8 an Tl (19)

where |[lu| = max |u(x, y, t)|. The coefficients of the
second-order partial derivatives a; take the values
a,=1, a,=1 and a, = 1/Pr. The optimal conver-
gence of the system is achieved when the values of
k and h are chosen so that

ro=&0o(e2—¢)) +&,00(c) ~£2) (20)
where ¢, = min (1/2a;), &, = (a; ' +ay ')/12 and 6, is
the Heaviside step function.

_Let us suppose that the solution of equation (14) is
subjected to a boundary condition at infinity as it
happens with equations (8)~(10). Solving equation
the distance y,, at which the boundary condition is
imposed, from the continuity condition u,(y.) =0
which is satisfied far away from the surface of the
sphere.

Although this method introduces a severe restric-
tion on the choice of the time step, it remains a very
fast method for the study of physical phenomena with-
in a period of time of the order Uy/r,. Important quan-
tities require the evaluation of certain derivatives like
u, on the surface of the sphere. These derivatives are
evaluated using the Lagrange interpolation formula

W0 = (=3uly+4ul, —uly)/(2h) + O(h).

RESULTS AND DISCUSSION

The numerical results indicate the velocity and ther-
mal boundary layer growth for gases having a Prandtl
number Pr = 0.71, under a uniformly accelerated
potential flow of the form U = 1.5¢sin x. Results of
various quantities as functions of x and ¢ are presented
for the angular velocities w = n/2 and 3n/2, denoted
by w, and w, respectively. The buoyancy parameter
A varies from the pure forced convection A = 0 to the
mixed convection values A = 3, 10, 50 for aiding flow
and from 0 to —3 for opposing flow. The effects
of the suction (¢ < 0) and injection (¢ > 0) are also
investigated for the parametric values ¢ = —0.5 and
0.5, respectively. The value ¢ = 0 corresponds to an
impermeable surface.

The variation of the velocity components u* = u/U
and w* = w/w as functions of yand tforc = 0,w = o,
and A = —3,0,3 when x = 0.6 and 1.2 rad are shown

on Figs. 1 and 2, respectively. We observe that for
aiding flow, the velocity gradient of u* at the wall
increases as the buoyancy force increases and hence
the velocity boundary layer thickness J, decreases.
Comparing Figs. | and 2 we observe that as the angle
x increases the velocity u* decreases rapidly as buoy-
ancy increases for A < 0, while it increases very slowly
as buoyancy increases for A > 0. An overshooting of
u is observed beyond the local free stream velocity
which increases as the buoyancy increases for aiding
flow and decreases gradually as time increases. This
is because the buoyancy force inside the boundary
layer assists the forced flow. The rotational velocity
w* increases as |A] increases for A < 0 and decreases
as buoyancy increases for A > 0. 1t seems that w*
becomes less sensitive to buoyancy as « increases (Fig.
3). When w = w, the rotational and forced flow are
of comparable magnitude as ¢ varies from 0.8 to 1.2.
As o increases the thickness J, decreases while the
overshooting of u* becomes stronger because of the
coupling of the buoyancy force to the fast rotation.
The effect of the buoyancy force on u* when the
surface of the sphere is porous subjected to suction
¢ = —0.5 or injection ¢ = 0.5 is shown on Figs. 4-6.
The values ¢ = —0.5, 0, 0.5 will be denoted by C_,
Coand C,, respectively. For aiding flow subjected to
suction we see a reduction of the overshooting of u*
and a small increase of the thickness d,, while in the
case of injection J, decreases. For opposing flow sub-
jected to suction the velocity «* increases yielding to
a reduction of §,, while in the case of injection a
significant increase of J, is observed. As time increases
the velocity profiles are shifted to smaller values in the
aiding flow while they are shifted to higher values in
the case of opposing flow. The rate of variation of the
various profiles as f increases is due to the influence
of our free stream velocity. In Fig. 6 similar results
are shown for the increased angular velocity w =
when r = 0.8 and 1.2. We observe that for 1 = 0.8, in
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FiG. 2. Profiles of 4* and w* as functions of y and ¢ for
w=0w,c=0and Pr=07latx=12.
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FiG. 3. Profiles of u* and w* as functions of y and ¢ for
w=a,c=0and Pr=071 at x = 0.6.

opposing flow, the injection yields to a higher velocity
profile than the corresponding one in the case of
suction. This is due to the fact that when @ » U the
rotational forces cause the decrease of the values of
the vertical velocity v. This effect which is much
stronger in the case of injection results in the increase
of u*. Hence for A < 0 and @ » U the thickness &,
takes lower values imposing injection than imposing
suction. As U increases with time this behaviour is
reversed. The low profile of 4* in the opposing flow
is due to the effect of the low rate of thermal flow from
the free stream to the sphere.

The variation of the temperature 8(y, t) for various
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Fi1G. 5. Profiles of u* for ® = w,, Pr=10.71, x = 0.6 and
=1.2.

values of A and ¢ when x = 0.6 and © = w, are shown
on Fig. 7, while similar results are presented in Table
1 for x = 1.2 and t = 0.8 when o = w,, w, Figure 7
shows that as the buoyancy increases the temperature
decreases in the aiding flow while it increases in the
opposing flow. The effect of buoyancy forces of small
magnitude on the temperature is not significant. As
the suction increases the temperature decreases while
in the case of injection this behaviour is reversed. The
temperature increases with the angle x. The coupling
of suction with increasing aiding flow reduces further
the thermal boundary layer thickness &, while the
coupling of injection with increasing opposing flow
increases further the thickness 8, The increase of the
rotation reduces the temperature profile and increases
its steepness except in the case ¢ = ~0.5, A= -3
(Table 1). The free stream causes a small increase of
the temperature as time varies from 0 to the vicinity

15—

FiG. 4. Profiles of u* for w =@, Pr=0.71, x=06 and FiG. 6. Profiles of «* for w = w, Pr=0.71, x =06 and

1=08.

t=038,1.2.
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F16. 7. Profiles of temperature # as functions of y and ¢ for
@ = w, Pr=10.71 and x = 0.6.

of 0.7 (Fig. 7) for 0 < x < 1.5. Astime rand Uincrease
further the temperature decreases slowly for positive
or negative A and angles in the range 0 < x < 0.78.
For x > 0.78 the temperature continues to decrease
slowly for A = 0 while it increases for A < 0. This is
due to the very small values of the velocity u* when
A <0 and 1> 0.7 (Figs. 1 and 2). Increasing w the
situation is reversed and the temperature decreases
again as x > 0.78 and A < 0 for ¢ > 0.7 (Table 1, see
c=0,A=-3atr=1.2).

The angular distribution of the local Nusselt num-
ber in terms of Nu Re~"? for buoyancy parameters
—-3<A<50andc= —0.5,0,0.5are shown on Figs.
8 and 9 for w = w, at ¢t = 0.8, 1.2 and on Fig. 10 for
w = w, at t = 0.8. The local surface heat transfer rate
increases as the buoyancy force increases for aiding

P. HATZIKONSTANTINOU

Fi1G. 8. Angular distribution of the local Nusselt number for
w=aw, Pr=07land t = 0.8.

flow, while an opposite trend is observed for opposing
flow. The Nusselt number decreases as the angle x
increases from the stagnation point. Imposing suction
the number Nu Re~ "? increases while imposing injec-
tion it decreases. Figure 9 indicates that as the buoy-
ancy forces vary from moderate to small values the
local Nusselt number depends strongly on the vari-
ation of the local free stream velocity and increases as
time increases. This effect becomes more pronounced
in the opposing flow as x increases. Increasing w the
Nusselt number is shifted to higher values for small
and moderate buoyancy forces while it becomes less
sensitive as buoyancy increases to large values.

The relative changes in the local Nusselt number
Nu/Nu,, where Nu, is the Nusselt number at the stag-
nation point are shown on Fig. 11 for various values
of A, ¢ and w at = 0.8. For small rotations the
angular variation of Nu/Nu, is greater in the case of
A = 0 and 3 than the corresponding one for A = —3.
Imposing injection this effect becomes much more
pronounced in contrast to the case of suction. As w

Table I. Effect of buoyancy A and rotation w on the temperature 8 when ¢ = —0.5, 0, 0.5 at ¢ = 0.8. The case

for A= —3and ¢ = 0 at r = 1.2 is also shown
t=08,A=-3 t=08,A=0 t=08,A=3 t=12,A=-3
y ¢=-05 ¢c=0 ¢=05¢=—-05 ¢=0 ¢=05¢=-05 ¢=0 ¢=0.5 c=0
wS
0.0 1 1 1 1 1 1 1 1 1 1
0.3 0.7852 0.8370 0.8816 0.7679 0.8692 0.8645 0.7505 0.8043 0.8456 0.8557
0.6 0.5959 0.6788 0.7556 0.5635 0.6429 0.7187 0.5318 0.6062 0.6790 0.7119
0.9 0.4330 0.5293 0.6254 0.3912 0.4786 0.5691 0.3521 0.4296 0.5115 0.5693
1.2 02974 03919 0.4945 0.2538 0.3340 04239 0.2159 0.2819 0.3572 0.4307
1.5 0.1889 0.2688 0.3658 0.1511 0.2142 0.2909 0.1207 0.1685 0.2270 0.3006
@
0.0 1 1 1 I I 1 1 1 1 1
0.3 0.7861 0.8362 0.8782 0.7596 0.8065 0.8475 0.7384 0.7833 0.8239 0.7955
0.6 0.5967 0.6759 0.7467 0.5473 0.6167 0.6814 0.5098 0.5730 0.6340 0.5879
0.9 0.4331 0.5243 0.6108 0.3702 0.4421 0.5129 0.3255 0.3862 0.4481 0.3860
1.2 0.2969 0.38359 0.4763 0.2323 0.2934 0.3562 0.1906 0.2374 0.2869 0.2043
1.5 0.1883 0.2642 0.3475 0.1328 0.1766 0.2228 0.1010 0.1310 0.1631 0.0595
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F1G. 9. Angular distribution of the local Nusselt number for
w=q, Pr=0Tlandt =12,

increases to much higher values the picture changes
completely. The angular variation of Nu/Nu, is
greater as buoyancy decreases for aiding fiow and
increases for opposing flow. The angular change of
the local Nusselt number increases as injection
increases and decreases as suction increases.

A direct measure of the significance of the buoyancy
force is given by the ratio Nuo/Nuy, where Nuy is
the local Nusselt number for pure forced convection
(A = 0). The variations of these ratios for various
values of the parameters A and ¢ are shown in Fig. 12
for w = w,, w;and 1 = 0.8. We define as the threshold
of significance of the buoyancy the departure from
the pure forced convection by 5%. Then the limits of
significance of the buoyancy in the cases of suction,
injection and impermeable wall for w = @, o at
¢ = 0.8 are shown in Table 2. At ¢ = 1.2 the results
obtained are very close to those of Table 2. The results
indicate that when injection increases the thresholds
of significance of buoyancy forces decrease in the
opposing and aiding flows while for increasing suction
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Fic. 10. Angular distribution of the loca! Nusselt number of
w=aw, Pr=07land ¢ = 0.8.
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Fic. 11. Relative angular distribution of the local Nusselt
number for Pr = 0.7! and ¢ = 0.8.

these thresholds increase. The opposing flow is more
sensitive to the buoyancy forces than the aiding flow.
The increase of the rotation causes the increase of the
corresponding thresholds.

The effects of buoyancy forces, of suction, injection
and rotation on the angular distribution of the local
wall stress = 0.5C;Re~"/? are shown for various
parametric values in Fig. 13 and Table 3. The quantity
1 increases as the buoyancy force, the rotation and
the suction increase, while it decreases as injection
increases. However, in comparison with buoyancy
suction, injection and rotation have a more pro-
nounced effect. The decrease of r and A decreases and
injection increases yields a shift of the separation point
of the flow toward the stagnation point. On the con-
trary the increase of t results in a delay in the sep-
aration of the flow. For very large buoyancy values
according to Suwono [3] the separation occurs not
due to the collision of the flow but to the vanishing of
the local stream stress at the wall. Comparing our
results for 7, with those obtained using the time inde-
pendent potential velocity u(x, o0, ) = U, = 1.5sin x
as a boundary condition, we see that the time-depen-
dent potential velocity U = U,t moves the separation
point towards the equator. For sufficiently large
values of U the separation will be caused by the van-
ishing of the local wall shear stress at the surface of

Table 2. Thresholds of significance of buoyancy forces in the
opposing and aiding flow when ¢ = —0.5,0,0.5at r = 0.8

W, Wy
t=08 A<0  A>0 A<0  A>0
c. —~185 190 ~300 330
G —140 145 —250 285
c, 105 110 215 217
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Fic. 12, Effects of buoyancy on the heat transfer at the stagnation point for Pr =0.71 and ¢ = 0.3.

8~ the sphere and not by the collision of the flow at the
~~~~~ he-3 surface.

6 A0 At this point it is interesting to compare results
:::ﬁ:% obtained with our method with those obtained from

Fi1G. 13. Angular distribution of the local friction factor for
w=w, Pr=07latt=12

other experimental and numerical works. The exper-
imental results presented by Yuge for mixed con-
vection at very low Reynolds and Grashof numbers
(Re = 1.8-53, Gr__-—; 0.125-230) indicated the average
Nusselt numbers Nu Re™ % of 0.706 and 1.643, respec-
tively, for A = 1 and 50. Chen and Mucoglu in their
numerical study of the steady state of a non-rotating
sphere using the boundary layer approximation, pre-
dicted local Nusselt numbers Nu Re™ ' ? ranging from
0.842 to 0.486 for A = I, from 1.312 to 1.071 for
A = 50 as x increases from 0 to 1.4 and Nu Re™'*
= 0.8149 at A = 0. Rajasekaran and Palekar in a
similar numerical study for the mixed convection
about a rotating sphere predicted the number Nu Re~ ' *
=0.838 at A =0. Solving now our problem,
using the time independent boundary condition
u(x, o, t) = U, instead of u(x, o, 1) = Ut (see equa-
tion (11)), our method reaches the limit of steady state
at t =2 when ¢ = 0. Our results for the case of a
non-rotating sphere, predicted a local Nusselt

Table 3. Effect of buoyancy A and rotation e on the local friction factor 0.5C; Re™""* when ¢ = ~0.5, 0, 0.5
at { = (.8. The case for A = 0, c = 0 for U = U, is also shown

= -3 A=0 A=3 U.A=0
X ¢=~05 ¢=0 ¢=05 c=-05 ¢=0 ¢=05¢=-05 ¢=0 ¢=03 c=0
w,
0.0 0,0001 0.000f 00001 0.0002 0.0002 0.0002 0.0003 0.0003 06.0003 0.0003
03 0.4387 0.3616  0.3037 0.7974 0.7334 0.6754 1.1086 1.0582 1.0052 0.7893
0.6 0.7717 0.6196  0.5054 1.4792 13529 1.2383 2.0938 1.9937 1.8880 1.4386
0.9 0.8806 0.6592  0.4941 1.9278 1.7429 1.5752 2.8408 2.6922 2.5346 1.7834
1.2 0.7269 0.4462  0.2393 20753 1.8364 1.6210 3.2697 3.0739 2.8648 1.7373
1.5 0.3509 00320 -0.1983 1.90i4 1.6170 1.3644 3.3306 3.0883 28306 1.2694
L]
0.0 0.0004 00004 0.0004 0.0005 0.0005 0.0005 0.0006 0.0006 0.0006 0.0005
0.3 1.1992  1.2420  1.2807 1.4300 1.4688 1.5012 1.6487 16869 L1.7164 1.4374
0.6 21628 22349 22987 26330 26968 2.7477 3.0754 3.1381 3.1829 2.6215
0.9 26744  2.7508 2.8109 3.4071 3.4654 3.5008 4.0886 4.1455 4.1728 3.3040
1.2 2.4486 2.5073 2.5564 3.5508 3.5794 3.5744 4.4968 4.503]1 4.4633 32314
1.5 0.7623 0.5120 0.3345 2.5624 2.4084 2.2418 40831 3.9943 3.8422 2.0360
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number Nu Re~''? ranging from 0.848 to 0.54 for
A = 1and from 1.33 to 1.07 for A = 50 as x increases
from 0 to 1.4, and Nu Re™"? = 0.825 for A =0.
Imposing rotation when ¢ = 0 and A = 0 the number
Nu Re™"? ranges from 0.84 to 0.49 at w = @, and
from 0.95 t0 0.53 at w = w, as x varies from 0 to 1.4.
The agreement between the theoretical and exper-
imental results is fair for A = | and very poor for
A = 50 because our results are based on the boundary-
layer approximation which is valid in the case of large
Reynolds and Grashof numbers,
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Résumé—On présente I'¢étude des caractéristiques de I'écoulement et du transfert de chaleur lors de la
croissance de la couche limite autour d’une sphére en rotation soumise a une accélération uniforme. Des
résultats sont présentés pour des gaz & nombre de Prandtl de 0,71 et différentes valeurs de flottement et de
rotation, lorsque la surface est solide, ou poreuse soumise 4 succion ou injection. On applique une méthode
numérique pour laquelle on détermine les conditions de stabilité et de convergence optimale. On trouve
que le nombre de Nusselt local et le coefficient de frottement local augmentent quand augmente le flottement
pour un écoulement avec succion et décroit lorsque le flottement augmente mais avec injection. Le seuil de
signification des forces de flottement s’abaisse quand I'injection augmente et monte quand la succion croit.

UNSTETIGE MISCHKONVEKTION AN EINER POROSEN ROTIERENDEN KUGEL

Zusammenfassung—Stromung und Wirmetransport bei instationdrem Grenzschichtwachstum an einer
rotierenden Kugel in einer erzwungenen Stromung werden untersucht, wobei die Strémung durch einen
gleichférmig beschleunigten Freistrahl hervorgerufen wird. Es werden Ergebnisse fiir Gase bei einer Prandtl-
Zahl von 0,71 und fiir verschiedene Auftriebs- und Rotationswerte vorgestellt, wobei die Oberfliche fest
oder pords sein kann und letztere einem Absaugen oder Einblasen unterliegt. Es wird ein numerisches
Verfahren angewandt, fir das die Stabilitdtsbedingungen und die optimale Konvergenz bestimmt werden.
Die 6rtliche Nusselt-Zahl und der Srtliche Reibungsfaktor nehmen mit zunehmendem Auftrieb bei zu-
sdtzlicher Strdmung durch Absaugen zu, withrend sie mit zunehmendem Auftrieb und Einblasen abnehmen.
Die Schwelle fiir die Bedeutung der Auftriebskrifte nimmt mit zunehmendem Einblasen ab und mit
zunehmendem Absaugen zu,

HECTALIMOHAPHAST CMEWIAHHAA KOHBEKLMA OKOJIO NOPHCTOR
BPAIIAIOMIECS COEPhI

AmsoTammst—cCACNYIOTER XAPAXTEPHCTHRH TEYEHHS H TEMNONEPEHOCA B PACTYINEM HECTALMOHAPHOM
NOrPAHATHOM CJIOE OKOJIO Bpainaiomweica chepil B BLIHYRICHHOM NOTOKE, 06YCIOBICHHOM MOCTORHHO
yckopenusiM ¢8060abM TeuenneM. TTpencTasnennt pe3yIsTaTht VIR ra3os ¢ Pr =071 & PA3NTHYHbIMH
IHBYCHUAMH NOTLEMHON CHITM ¥ WHCNA BPAINCHASR, NOMYYCHHBIMA AKX CAy4acE Teepach wm nopucroll
TOBEDXHOCTH OPH HAJMHYKR Ha HeH BCachiBanus Wik Bysa. Hcnomsayercs wmenenuull MeTon, ANg XOTO-
POro onpejencHu! ycsioBHs yCTOHMMBOCTH M onTHMambHOM cxommmocTH. Halimeno, 9o noxansHoe
wncno HyccenmsTa i noxansuuil xo3QQHIUHEHT TPCHES YBENHMUMBAIOTCA C POCTOM NOXBEMHON CATM B
Cilyqae CIYTHOTO MOTOKA NPH HAIHYAM BCACLIBAMEN H YMCHBUIAIOTCH C POCTOM NOTREMHOMN CHIE! IpH
ayee. Ilopor 3QexTHBHOCTH NOXBEMHLIX CHII CHUXAETCA C YBE/IHUCHHCM BIYBA H BO3PACTACT C YCHIIE-
HHEM BCACHIBAHHN.



