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Abstract-This paper presents the study of the flow and heat transfer characteristics in unsteady boundary 
layer growth over a rotating sphere in forced flow caused by a uniformly accelerated free stream velocity. 
Results are presented for gases with a Prandtl number of 0.71 and various buoyancy and rotational values 
when the surface is solid or porous subjected to suction or injection. A numerical method is applied for 
which the conditions for stability and optimal convergence are determined. It is found that the local Nusselt 
number and the local friction factor increase with increasing buoyancy for aiding flow and suction while 
they decrease with increasing buoyancy and injection. The threshold of significance of buoyancy forces 

decreases as injection increases and increases as suction increases. 

INTRODUCTION 

THE ROLE of the buoyancy force on the forced and 
free convection heat transfer about the axisymmetric 
round-nosed bodies for the cases of aiding and oppos- 
ing flows has been studied in the steady state by severa! 
authors [l-3]. The neglect of the buoyancy force, 
which is due to the density variation when the tem- 
perature difference between the surface and the fluid 
is large, may not be justified when the ve!ocity is small. 

The determination of the thermal boundary layer 
properties in the case of mixed convection are of par- 
ticular interest because of their practical implications. 

The problem of mixed forced and free convection 
about a non-rotating sphere has been studied by Chen 
and Mucoglu [4] while the effect of the mixed flow in 
a laminar boundary layer over a rotating sphere has 
been investigated by Rajasekaran and Palekar [S]. 
In both cases appropriate coordinate transformations 
are used so that the partial differential equations of 
the problem are reduced to equations involving 
derivatives with respect to only one variable. The 
equations obtained are solved numerically under vari- 
ous velocity and thermal boundary conditions. In the 
case of very small Reynolds and Grashof numbers 
analytical solutions have been presented on the prob- 
lem of mixed forced and free convection about a 
sphere by Hieber and Gebhart [6]. Under the same 
conditions experimental results have been reported by 
Yuge and Klyachko [7, 83. 

Although unsteady hydrodynamic flow with or 
without heat transfer has been studied extensively in 
the cases of infinite plates [9] it seems that very little 
work has been carried out on unsteady axial flow past 
a body of revolution like a sphere or a cylinder [lo]. 

The problem to be tackled here is the unsteady flow 
of a viscous incompressible fluid around the surface 
of a rotating sphere. The effect of the buoyancy force 

on the flow arising from the combination of rotation 
and forced flow is studied at large Reynolds and 
Grashof numbers. The analysis is carried out for 
both aiding and opposing flows in which the buoyancy 
force aids and opposes the forced convective flow, 
respectively. The boundary layer growth on a spinning 
sphere is studied for an impermeable and a porous 
surface, respectively. In the second case the sphere is 
subjected to suction or injection of fluid of the same 
kind. Results are presented for gases having a Prandtl 
number of 0.71 and for two constant values of the 
angular velocity w. A numerical technique based on 
the finite difference approximation using the explicit 
method [ 1 l] has been developed for our case where 
several variables are involved and the criteria for sta- 
bility and convergence are determined. 

ANALYSIS AND SOLUTION METHOD 

Consider an unsteady incompressible flow about a 
rotating sphere of radius r. which is placed in a 
flow field with free stream potential velocity u’ = 
1.5 U0 sin (x’/r,,)f( t’) and a constant temperature 
T& U, is a constant velocity and f(t’) a dimen- 
sionless function of time t’. The rotational axis of 
the sphere is parallel to the free stream velocity and 
opposite to the gravitational field as shown in the inset 
of Fig. 1. The fluid properties are constant except 
that the density changes produce buoyancy forces. We 
consider a curvilinear coordinate system (x’, y’, cp’) 
such that x’ is measured along a meridian from the 
first stagnation point and y’ measures the distance 
normal to the surface. The radial distance from a 
surface element to the axis of symmetry is denoted 
r’(x’) = f. sin (x’/rJ. 

If u’, CT’, w’ are the components of the velocity field 
and T’ the temperature, the equations which govern 
the boundary layer are given by 
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NOMENCLATURE 

a, ai coefficients of the partial derivatives 0: time independent local free stream 

Cr local friction factor velocity 
C constant vertical velocity at the surface u velocity component in the .y-direction 
C,, C,,, C_ injection, solid wall and suction, u* velocity ratio, u/U 

respectively V velocity component in the Y-direction 

9 dimensionless gravitational acceleration w velocity component in the direction of 

h, local heat transfer coefficient rotation 
h step of space variables Wt’+ velocity ratio, W//W 
Cr Grashof number, gfl(r,- T&$/v2 x coordinate measured along the surface 
K thermal conductivity from the stagnation point 
k step of time variable Y coordinate measured normal to .V 
L function of the second-order numerical Z coordinate measured in the direction of 

approximations rotation. 
Nu local Nusselt number, hr,,/K 

N& local Nusselt number at the stagnation 
point Greek symbols 

Pr Prandtl number, v/a thermal diffusivity 

4W local surface heat transfer rate per unit ;5 thermal expansion coefficient 
area 6, velocity boundary layer thickness 

r0 radius of sphere 6, thermal boundary layer thickness 
r, ratio, k/h* 0 dimensionless temperature 
r radial distance from symmetrical axis to 00 Heaviside step function 

“..A-,.&. L .._.. ̂ ^^_. _^_^__.__ ,-..I n-2 JuIIacs A ouvyauuy pararnrrer, vr,nr- 
Re Reynolds number, UOr,Jv VII kinematic viscosity 
t time 5 local wall stress 0 5C Re- ’ ’ 7. f 
T fluid temperature w,, w, small and large angular velocity, 
TW wall temperature respectively. 

T, free stream temperature 
(I local free stream velocity 

II0 undisturbed oncoming free stream Superscript 
ve!ocity , dimensima! cpn!itb. 

du’ 

32 
, du’ ,dti W" ar dU 

+udx’+r@--~&!=~ 

(1) 

+vo%kg/?(T’-T;)sin(x’/rd (2) 

dw’ , dw’ , awl ~‘24‘ dr’ azW’ 

X+‘dx’+‘dy’+ r’ ax* ay 
--=vgy (3) 

The following non-dimensional variables and pa- 
rameters are introduced : 

dT ,dT ,dT vg d2T 
w+uz+vdy’=Prdy’2 

x=.T, y=_--_..- 
y’ Re’12 r‘(x’) 

(4) r” r0 

, r(x)=-, I=% 
rO 

I 

n=U 
vI &Ii2 nv’ r0 

U0 
a=-, w=--, g=-_ig’ 

r0 UO U6 

(2) the positive and negative signs are to be taken 
for aiding (T; < T&) and opposing (T; > T&) flows, 
respectively. The radial velocity of the fluid v’ = c’ is 
considered to be a constant at the surface. For an 
impermeable surface we have c’ = 0 while in the case 
of a porous surface fluid is sucked (c’ < 0) or injected 
(c’ > 0) with a constant value. 

subjected to the boundary conditions 

a’ = r’ = w’ = r E 0 at t’ Q 0 

u’ = 0, v’ = c’, w’ = r’(x’)d, T’ = TL 
at y’ = 0, 1’ > 0 

u’ = u’ t W’ = 0, T’ = T:, at y-) co, 1’ > 0. 
(5) 

Let us consider that Ti represents the uniform tem- 
perature of the surface of the sphere. Then in equation 

row’ r-r:, 
OS-- 

uo ’ 
0 = T’, 

w - r:, 
A = GrjRe’. (6) 

The system of equations (l)-(4) takes the following 
form: 

W4 + a(rv) = o 

ax ay (7) 
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P (f0) is based on the finite difference approximation, 
using an extension of the explicit method for one 
variable in the present case of several variables. Let us 
describe the method, using an equation of the general 
form 

a,+Llr ” t\r, A-n.fr ” ,111 =cl?y2&7_rr ” 11 (14) -“\--,/9.,-X 3 -,\-r,r-l---y I -,,--9,. -, 

where u, represents the partial derivatives of u with 
- respect to the subscript and II is a positive constant. 

/ The approximation to u(nk, ih, jh) where k and h 
represent the steps in time and space, respectively, is 
denoted by uTj. Substituting into equation (14) the 
approximation u” ?J = (UT: ’ - u”,,)/k for the derivative 
with respect to ttme and using the central difference 
approximations to first order for the spatial deriva- 
tives we obtain 

I I 
I 2 3 

u~j+~+a;,j+O(k2+kh2) (15) 

Y 

FIG. 1. Profiles of u* and w* as functions of y and I for where 
o=o,,c=OandPr=0.71atx=0.6. 

rr = k/h’. 

au au au w2 ar du a2U Extending the method of Richtmyer and Morton [ 1 l] 

-&+“&+v&-fax- -;if+v+Aer (8) for the estimation of the minimum truncation error 
we have found after detailed calculations that the 
necessary stability conditions are 

1 2u 

de ae de i a28 
(16) 

z+“jg+“ay=prdy2. (10) 
r, G;i;; and h <JJ~~JJ 

where \lu, 11 = max \a,(~, y, t)l. The condition for 

The boundary conditions for the same dimen- optimal convergence of equation (14) is determined 

sioniess variabies are 
Ed__. -L- _~_~ . 1. tram rne requtremenr to minimize the negieeied terms 

u=u=w=e=o at r<o 
of order k2 and kh’, respectively. Rewriting equation 
(14) as u, = uu,?+H where H= -(u,u,+u,u,-ax) 

u = 0, u = C, w = I(X)W, e = 1 at y = 0, t > 0 this requirement is expressed by 

u = u, w = 0, e=o at Y+OO, I > 0. (11) 

Here we consider the uniformly accelerated free 
stream velocity so that U = 1.9 sin X. 

Physicai quantities of primary interest are the iocai 
Nusselt number Nu and the local friction factor Cr 
which are defined respectively by where 6H = u,u,f -u,-,u,~. in the first instant after the 

motion had been started from rest, the boundary layer 
is very thin and the viscous term uj is very large while 
the convective term H retains its normal values. The 

where the local heat transfer coefficient and the term u,’ is balanced by the non-steady acceleration u, 
wall shear stress are given respectively by h, = q,J together with the pressure gradient (if it exists). Sub- 
(T: - T;) and ?W = j,@u’/ay’)y, _ ,, where q., = - K(?T’/ stituting the derivative u: = a*u~+aH~+ H, into 

ay7Y. _ O. Using the non-dimensional variables (6) equation (16) we obtain 
we obtain the relations 

L.=T[r,(r,a-3 bH]~O. u,4+r:(uHj?+H,)+r,T 

(18) 
(13) 

ui.j I 
*+t =r 

Neglecting the second term which varies like rf and 
The numeric sohttion of parabolic equations (8)- 

. . . . 
considering that the contribution of the third term 
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to the correction is negligible, we observe that the 
quantity L is minimized for r, = 1/(6u). This condition 
for optimal convergence has been verified by extensive 
numerical calculations. 

Applying the above analysis in the system of equa- 
tions (@-(IO) simultaneously we conclude that the 
necessary stability conditions are 

1 
rs G G (i = n, w, 0) and 

2ai 
h c ((uII (19) 

where IIuII = max h&y, t)I. The coefficients of the 
second-order partial derivatives ai take the values 
a,= 1, a,= 1 and a,= l/Pr. The optimal conver- 
gence of the system is achieved when the values of 
k and /I are chosen so that 

*, = E,e0(E*-E,)+E2e&, -Ed (20) 

where E, = min (l/2ai), s2 = (a; ’ +a; I)/12 and 0, is 
the Heaviside step function. 

Let us suppose that the solution of equation (14) is 
subjected to a boundary condition at infinity as it 
happens with equations (8)-( 10). Solving equation 
/I 1, .._A .._I -..,_r :__ rL_ A__:.._&:.,_ _. . ..^ ,I,*,..,:,, [“, anu sa,curarrr,g UK Ue;I,“IL‘“c y., WC UGLCLU11I1~ 
the distance Y,,, at which the boundary condition is 
imposed, from the continuity condition u,(y”) = 0 
which is satisfied far away from the surface of the 
sphere. 

Although this method introduces a severe restric- 
tion on the choice of the time step, it remains a very 
fast method for the study of physical phenomena with- 
in a period of time of the order (I&,. Important quan- 
tities require the evaluation of certain derivatives like 
uY on the surface of the sphere. These derivatives are 
evaluated using the Lagrange interpolation formula 

RESULTS AND DISCUSSION 

The numerical results indicate the velocity and ther- 
mal boundary layer growth for gases having a Prandtl 
number Pr = 0.71, under a uniformly accelerated 
potential flow of the form V = 1St sin x. Results of 
various quantities as functions of x and tare presented 
for the angular velocities o = x/2 and 3~/2, denoted 
by o, and o,, respectively. The buoyancy parameter 
A varies from the pure forced convection A = 0 to the 
mixed convection values A = 3, 10, 50 for aiding flow 
and from 0 to -3 for opposing flow. The effects 
of the suction (c c 0) and injection (c > 0) are also 
investigated for the parametric values c = -0.5 and 
0.5, respectively. The value c = 0 corresponds to an 
impermeable surface. 

The variation of the velocity components u* = u/U 
and w* = w/o as functions ofy and t for c = 0, o = w, 
and A = - 3,0,3 when x = 0.6 and I .2 rad are shown 

on Figs. 1 and 2, respectively. We observe that for 
aiding flow, the velocity gradient of II* at the wall 
increases as the buoyancy force increases and hence 
the velocity boundary layer thickness 6, decreases. 
Comparing Figs. 1 and 2 we observe that as the angle 
x increases the velocity U* decreases rapidly as buoy- 
ancy increases for A < 0, while it increases very slowly 
as buoyancy increases for A > 0. An overshooting of 
u is observed beyond the local free stream velocity 
which increases as the buoyancy increases for aiding 
flow and decreases gradually as time increases. This 
is because the buoyancy force inside the boundary 
layer assists the forced flow. The rotational velocity 
IV* increases as IAl increases for A < 0 and decreases 
as buoyancy increases for A > 0. It seems that w* 
becomes less sensitive to buoyancy as ti increases (Fig. 
3): When 0 = ~0~ the rotational and forced flow are 
of comparable magnitude as t varies from 0.8 to 1.2. 
As o increases the thickness 6, decreases while the 
overshooting of U* becomes stronger because of the 
coupling of the buoyancy force to the fast rotation. 

The effect of the buoyancy force on U* when the 
surface of the sphere is porous subjected to suction 
c = -0.5 or injection c = 0.5 is shown on Figs. 4-6. 
The va111c=c r = -0 5 Il n 5 ~i!! be &noted hv C . ..v . . . . ..v.. _ _.*, “, “._ -, --I 
C’, and C,, respectively. For aiding flow subjected to 
suction we see a reduction of the overshooting of u* 
and a small increase of the thickness 6., while in the 
case of injection S, decreases. For opposing flow sub- 
jected to suction the velocity u* increases yielding to 
a reduction of 6,, while in the case of injection a 
significant increase of 6, is observed. ‘4s time increases 
the velocity profiles are shifted to smaller values in the 
aiding flow while they are shifted to higher values in 
the case of opposing flow. The rate of variation of the 
various profiles as t increases is due to the influence 
of our free stream velocity. In Fig. 6 similar results 
are shown for the increased angular velocity w = w, 
when t = 0.8 and 1.2. We observe that for t = 0.8, in 

FIG. 2. Profiles of U* and w* as function of y and t for 
w=o,,c=OandPr=0.71at.r=1.2. 
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Ftc. 

Y 

3. Profiles of u* and w* as functions of y and t for 
w = w,, c = 0 and Pr = 0.7 I at x = 0.6. 

opposing flow, the injection yields to a higher velocity 
profile than the corresponding one in the case of 
suction. This is due to the fact that when w >> U the 
rotational forces cause the decrease of the values of 
the vertical velocity v. This effect which is much 
stronger in the case of injection results in the increase 
,P ..* “a,,a F..- A II-I “...-I I.. . . rl +hrr +h;,.b”~cr A “L U . ‘,G,ILG I”1 1, . ” Q,,U UJ ,, ” Ill\r Lll,~~lZCJJ “” 
takes lower values imposing injection than imposing 
suction. As iJ increases with time this behaviour is 
reversed. The low profile of u* in the opposing flow 
is due to the effect of the low rate of thermal flow from 
the free stream to the sphere. 

The variation of the temperature O(J, r) for various 

I.5 r 

Y I I I r I I I 
0 I 2 3 

Y 

FIG. 4. Profiles of u* for w = w,, Pr = 0.71. I = 0.6 and 
t = 0.8. 

1.5 r 
I 

1.0 

Lt. 

__-_-_-__6’_3 

0.5 
-A-O 
- * -A*3 

0 I 2 3 
Y 

FIG. 5. Profiles of u* for cu = w,, Pr = 0.7 1, x = 0.6 and 
t = 1.2. 

values of A and c when x = 0.6 and o = o, are shown 
on Fig. 7, while similar results are presented in Table 
1 for x = 1.2 and t = 0.8 when o = q, oI. Figure 7 
shows that as the buoyancy increases the temperature 
decreases in the aiding flow while it increases in the 
opposing flow. The effect of buoyancy forces of small 
magnitude on the temperature is not significant. As 
the suction increases the temperature decreases while 
in the case of injection this behaviour is reversed. The 
temperature increases with the angle x. The couphng 
of suction with increasing aiding flow reduces further 
&L. rl-___I L_.._>__.. ,_..^_ .L:_,.__“” P . ..L.*_ *Lx rne tnellllal oounuary liaycr LIIILX.IICSJ “0 wuuc L‘lC 
coupling of injection with increasing opposing flow 
increases further the thickness 8@. The increase of the 
rotation reduces the temperature profile and increases 
its steepness except in the case c = -0.5, A = -3 
(Table 1). The free stream causes a small increase of 
the temperature as time varies from 0 to the vicinity 

FEG. 6. Profiles of u” for w = y, Pr = 0.71, x = 0.6 and 
f = 0.8, 1.2. 
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FIG. 7. Profiles of temperature t9 as functions of Y and I for 
o = o,, Pr = 0.71 and x = 0.6. 

of0.7 (Fig. 7) for0 < x < 1.5. As time tand C/increase 
further the temperature decreases slowly for positive 
or negative A and angles in the range 0 < x < 0.78. 
For x > 0.78 the temperature continues to decrease 
slowly for A 2 0 while it increases for A < 0. This is 
due to the very small values of the velocity U* when 
A c 0 and t > 0.7 (Figs. 1 and 2). Increasing w the 
situation is reversed and the temperature decreases 
again as x > 0.78 and A < 0 for t > 0.7 (Table 1, see 
c = 0, A = -3 at t = 1.2). 

The angular distribution of the local Nusselt num- 
ber in terms of Nu Re- ‘I* for buoyancy parameters 
-3 < A < 50 and c = -0.5, 0,O.j are shown on Figs. 
8 and 9 for o = o, at t = 0.8, 1.2 and on Fig. 10 for 
w = o, at I = 0.8. The local surface heat transfer rate 
increases as the buoyancy force increases for aiding 

0 0.3 0.6 0.9 1.2 I.5 
x 

FIG. 8. Angular distribution of the local Nusselt number for 
o=w,,Pr=0.71andr=O.S. 

flow, while an opposite trend is observed for opposing 
flow. The Nusselt number decreases as the angle x 
increases from the stagnation point. Imposing suction 
the number Vu Re- ‘I* increases while imposing injec- 
tion it decreases. Figure 9 indicates that as the buoy- 
ancy forces vary from moderate to small values the 
local Nusselt number depends strongly on the vari- 
ation of the local free stream velocity and increases as 
time increases. This effect becomes more pronounced 
in the opposing flow as x increases. Increasing w the 
Nusselt number is shifted to higher values for small 
and moderate buoyancy forces while it becomes less 
sensitive as buoyancy increases to large values. 

The relative changes in the local Nusselt number 
Nu/NuO, where Nu,, is the Nusselt number at the stag 
nation point are shown on Fig. 11 for various values 
of A, c and w at t = 0.8. For small rotations the 
angular variation of Nu/NuO is greater in the case of 
A = 0 and 3 than the corresponding one for A = - 3. 
Imposing injection this effect becomes much more 
pronounced in contrast to the case of suction. As w 

Table I. Effect of buoyancy A and rotation o on the temperature 0 when c = -0.5.0,O.S at I = 0.8. The case 
forA= -3andc=Oatr= 1.2isalsoshown 

1=0.8,12= -3 1 = 0.8, A = 0 t = 0.8, A = 3 I = 1.2, A = -3 
Y c= -0.5 c = 0 c =o.s c = -0.5 c = 0 c = 0.5 c= -0.5 c= 0 c = 0.5 c=o 

0.0 1 I 1 1 
0.3 0.7852 0.8370 0.8816 0.7679 
0.6 0.5959 0.6788 0.7556 0.5635 
0.9 0.4330 0.5293 0.6254 0.3912 
1.2 0.2974 0.3919 0.494s 0.2538 
1.5 0.1889 0.2688 0.3658 0.151 I 

0.0 I 1 1 I 
0.3 0.7861 0.8362 0.8782 0.7596 
0.6 0.5967 0.6759 0.7467 0.5473 
0.9 0.433 I 0.5243 0.6108 0.3702 
1.2 0.2969 0.3859 0.4763 0.2323 
1.5 0.1883 0.2642 0.347s 0.1328 

0, 

i.8692 i.8645 
0.6429 0.7187 
0.4786 0.5691 
0.3340 0.4239 
0.2142 0.2909 

01 
I I 
0.8065 0.8475 
0.6167 0.6814 
0.4421 0.5129 
0.2934 0.3562 
0.1766 0.2228 

1 1 1 I 
0.7505 0.8043 0.8456 0.8557 
0.5318 0.6062 0.6790 0.7119 
0.3521 0.4296 0.5115 0.5693 
0.2159 0.2819 0.3572 0.4307 
0.1207 0.1685 0.2270 0.3006 

1 1 I 1 
0.7384 0.7833 0.8239 0.7955 
0.5098 0.5730 0.6340 0.5879 
0.3255 0.3862 0.448 I 0.3860 
0.1906 0.2374 0.2869 0.2043 
0.1010 0.1310 0.1631 0.0595 
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0 0.3 0.6 0.9 1.2 I.5 

x 

FIG. 9. Angular dist~bution of the &al Nusselt number for 
o = w,, Pr = 0.71 and t = 1.2. 

increases to much higher values the picture changes 
completely. The angular variation of Nu/NuO is 
greater as buoyancy decreases for aiding flow and 
increases for opposing flow. The angular change of 
the local Nusseh number increases as injection 
increases and decreases as suction increases. 

A direct measure of the significance of the buoyancy 
force is given by the ratio 1Vu~iM4~~, where IVQ is 
the local Nusselt number for pure forced convection 
(A = 0). The variations of these ratios for various 
values of the parameters A and c are shown in Fig. 12 
for 0 = w,, w, and t = 0.8. We define as the threshold 
of significance of the buoyancy the departure from 
the pure forced convection by 5%. Then the limits of 
significance of the buoyancy in the cases of suction, 
injection and im~~eable wall for w = o,, w, at 
t = 0.8 are shown in Table 2. At t = I.2 the results 
obtained are very close to those of Table 2. The results 
indicate that when injection increases the thresholds 
of significance of buoyancy forces decrease in the 
opposing and aiding flows while for increasing suction 

--.“--_A._3 

-A-o 
-.-a.3 

--+-A40 
-A.50 

I I I I t I 
0 0.3 0.6 0.0 i.2 i.3 

I 

FIG. 10. Angular distribution of the local Nusselt number of 
w = q, Pr = 0.71 and t = 0.8. 

0.9 

0.4 
0 0.3 0.6 0.9 1.2 1.5 

x 

FIG. 11. Relative angular distribution of the local Nusseit 
number for Pr = 0.71 and t = 0.8. 

these thresholds increase. The opposing flow is more 
sensitive to the buoyancy forces than the aiding Bow. 
The increase of the rotation causes the increase of the 
corresponding thresholds. 

The effects of buoyancy forces, of suction, injection 
and rotadon oii the angii:ar dist~l!butlon of the ;ocai 

waI1 stress 7 = 0.5CfRe- “’ are shown for various 
parametric values in Fig. 13 and Table 3. The quantity 
r increases as the buoyancy force, the rotation and 
the suction increase, while it decreases as injection 
increases. However, in comparison with buoyancy 
suction, injection and rotation have a more pro- 
nounced effect. The decrease of 7 and A decreases and 
injection increases yieIds a shift of the separation point 
of the flow toward the stagnation point. On the con- 
trary the increase of r results in a delay in the sep- 
aration of the flow. For very large buoyancy values 
according to Suwono [3] the separation occurs not 
due to the collision of the flow but to the vanishing of 
the local stream stress at the wall. Comparing our 
results for r, with those obtained using the time inde- 
pendent potential velocity u(x, m, t) = Ue = 1.5 sin x 
as a boundary condition, we see that the time-depen- 
dent potential velocity U = Vet moves the separation 
point towards the equator, For sufficiently large 
values of U the separation will be caused by the van- 
ishing of the local wall shear stress at the surface of 

Table 2. Thresholds of significance of buoyancy forces in the 
opposing and aiding ftow when c = -O.&O, 0.5 at I = 0.8 

% @Jl 
t =0.8 A<0 A>0 A<0 ASO 

c- - 1.85 1.90 -3.00 3.30 
CO -1.40 1.45 -2.50 2.85 
C+ -1.05 1.10 -2.15 2.17 
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FIG. 12. Effects of buoyancy on the heat transfer at the stagnation point for Pr = 0.71 and I = 0.8, 

-----A._3 
I6 

-+-h-lo 
14 -A-ire 

iZ 

FIG. 13. Angular distribution of the local friction factor for 
u = w,, Pr = 0.71 at r = 1.2. 

the sphere and not by the collision of the flow at the 
surface. 

At this point it is interesting to compare results 
obtained with our method with those obtained from 
other experimental and numerical rvorks. The exper- 
imental results presented by Yuge for mixed con- 
vection at very low Reynolds and Grashof numbers 
(Re = 1.8-55, Gr = 0.125-230) indicated the average 
Nusselt numbers z Re- “* of 0.706 and I .643, respec- 
tively, for A = I and 50. Chen and .Mucoglu in their 
numerical study of the steady state of a non-rotating 
sphere using the boundary layer approximation, pre- 
dicted local Nusselt numbers Nu Re- ’ * ranging from 
0.842 to 0.486 for A = I, from 1.312 to 1.071 for 
A = 50 as x increases from 0 to I A and Nu Re- ’ ’ 
= 0.8149 at A = 0. Rajasekaran and Palekar in a 
similar numerical study for the mixed convection 
about a rotating sphere predicted the num~r NU Re- ’ ’ 
= 0.838 at A = 0. Solving now our problem. 
using the time independent boundary condition 
u(x, 35, t) = I;: instead of u(x, x1 I) = UJ (see equa- 
tion (1 I)), our method reaches the limit of steady state 
at t = 2 when c = 0. Our results for the case of a 
non-rotating sphere, predicted a local Nusselt 

Table 3. Effect of buoyancy A and rotation w on the local friction factor O.SC, Re- “I when c = -0.5, 0, 0.5 
at r = 0.8. The case for A =i 0, c = 0 for U = U, is also shown 

A=-3 A=0 A=3 L;. A = 0 
x c= -0.5 c =O c =ii 0.5 c = -0.5 c I0 E = 0.5 c = -0.5 c = 0 c = 0.5 c=o 

0.0 o.oooi o.OO01 0.0001 OHIO2 0.22 0.0002 0.0003 0.0003 0.0003 0.0u03 
0.3 0.4387 0.3616 0.3037 0.7974 0.7334 0.6754 1.1086 1.0582 I.0052 0.7893 
0.6 0.7717 0.6196 0.5054 1.4792 1.3529 I.2383 2.0938 1.9937 1.8880 1.4386 
0.9 0.8806 0.6592 0.4941 1.9278 1.7429 1.5752 2.8408 2.6922 2.5346 I .7834 
1.2 0.7269 0.4462 0.2393 2.0753 1.8364 1.6210 3.2697 3.0739 2.8648 1.7373 
1.5 0.3509 0.0320 -0.1983 1.9014 1.6170 1.3644 3.3306 3.0883 2.8306 1.2694 

0.0 o.ooo4 o.ooo4 0.0004 OBOOS O.O& 0.0005 0.0006 0.0006 O.OOO6 0.0005 
0.3 1.1992 1.2420 1.2807 1.4300 I.4688 I.5012 1.6487 1.6869 1.7164 I .4374 
0.6 2.1628 2.2349 2.2987 2.6330 2.6968 2.7477 3.0754 3.1381 3.1829 2.6215 
0.9 2.6744 2.7508 2.8109 3.4071 3.4654 3.5008 4.0886 4.1455 4.1725 3.3040 
1.2 2.4486 2.5073 2.5564 3.5508 3.5794 3.5744 4.4968 4.5031 4.4633 3.2314 
1.5 0.7623 0.5120 0.3345 2.5624 2.4084 2.2418 4.0831 3.9943 3.8422 2.0360 
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number Nu Re- ‘!* ranging from 0.848 to 0.54 for 4. t‘. !h Ch& and A. Mucaglu. Analysis of mixed forced 
A = 1 and from 1.33 to 1.07 for A = 50 as x increases 
from 0 to 1.4, and Nu Re- I/* = 0.825 for A = 0. 
imposing rotation when c = 0 and A = 0 the number 
Nu Re- “* ranges from 0.84 to 0.49 at o = o, and 
from 0.95 to 0.53 at w = oi as x varies from 0 to 1.4. 
The agreement between the theoretical and exper- 
imental results is fair for A = 1 and very poor for 
A = 50 because our results are based on the boundary 
layer approximation which is valid in the case of large 
Reynolds and Grashof numbers. 
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R&urn&-On prbsente 1’6tude des caractbristiques de l’koulement et du transfer1 de chaleur lors de la 
croissance de la couche iimite autour d’une sphkre en rotation soumise P une ac&i&ation uniforme. Des 
rksuitats sont p&sent& pour des gaz 6 nombre de Prandtl de 0,71 et diff&entes valeurs de flottement et de 
rotation, iorsque la surface est soiide, ou poreuse soumise B succion ou injection. On applique une mbthode 
numbrique pour iaqueiie on d&ermine ies conditions de stabilitl et de convergence optimale. On trouve 
que le nombre de Nusseit local et le coefficient de frottement local augmentent quand augmente le flottement 
pour un houlement avec suction et dCcroit lorsque ie Aottement augmente mais avec injection. Le seuii de 
signification des forces de flottement s’abaisse quand l’injection augmente et monte quand la suction croit. 

UNSTETIGE MISCHKO~EKTION AN EINER PORt)SEN ROTIERENDEN KUGEL 

Zusammenfassung-Str6mung und W%metransport bei instationlrem Grenzschichtwachstum an einer 
rotierenden Kugei in einer enwungenen Stremung werden untersucht, wobei die Strcimung durch einen 
gleichfijrmig beschleunigten Freistrahl hervorgerufen wird. Es werden Ergebnisse fiir Gase bei einer Prandtl- 
Zahi von O,?i und fiir verschiedene Auftriebs- und Rotationswerte vorgesteilt, wobei die Oberlllche fest 
oder poriir sein kann und ietztere einem Absaugen oder Einbiasen unteriiegt. Es wird ein numerisches 
Verfahren angewandt, Wr das die Stabiiit~ts~dingung~ und die optimale Konvergenz bestimmt werden. 
Die brtiiche Nusseit-2ahl und der iirtliihe Reibungsfaktor nehmen mit zunehmendem Auftrieb bei zu- 
s%tzlicher Strcimung durch Absaugen zu, wahrend sie mit zunehmendem Auftrieb und Einbiasen abnehmen. 
Die Schwelie liir die Bedeutung der AuftriebskrCfte nimmt mit zunehmendem Einblasen ab und mit 

zunehmendem Absaugen zu. 

HECTAuHOHAPIiAJf CMEIIIAHHASI KOHBEKIJiZff OKOJIO I-IOPHCTOR 
BPAIQAIOIIJERCJI CQEPbI 

~Hccnenyto~ca xapampncMlra ~e~cmfs w rennoncpesoca B pBmyuaeh4 eccramioHapi3oM 
norpwmoM cnoc 010no spaum~iueikn c$qw B nbIqxnemoM nmoxe. 06yc~1oa~1ercllo~ uocrommo 
yCKOpelfiibrM Cao6ow Tc¶eImCM. ~peXCTaMCHbt pe3yJl%=Tbt XJIJt -11 C P? = 0,7 i K &XWXl%w 
3t%a%H%aMXt IlOitXMHO$l C&i&t il’5sCJla IQaIttemm, n0~~~ XJt# CQ”laeB Tecp&Ofi iUIU UOp%fClO@ 
noaeprurocn5 up8 HaJIH% HB X&l B xmi BQ%a HcmXfb3yeTcff =mc.neim&l MerOJt, LiJta XOTo- 
poro OupeAeJleHar ycJiotuia ycTo&umocrB il O-HOP cxomocni. Ha&teiio, pro normoe 
pHc.no Hyccemna II n0-a rO~m&nc~ TpcHHn yaumnaaato?ca c pogrom noabe~lrofi canar B 
cnygae cnynioro noTom nps mime ~c~cbxmm A yhfem4mO~c~ c pomo~ aommoih cnm upsi 
BQ’BC. nOpOr ~XTUBIioCDl IIOA%CMHblX Can -GTcB C yMJ’IEWIIHeM BllyBB H BOlpWZTBCT C yCanC- 


